Weird stuff: Astronomy, cosmology and Zen

In this post I tell another story of how science, in going beyond what we can imagine, stretches our imagination to encompass new possibilities of the “real”. There are several important themes here, mostly implicit in this account. There is the fact that scientific measurement is often boring in the extreme, seemingly meaningless, especially when it consists of large tables of numbers. However, out of these tables come new mind-blowing meanings, as sublime as great poetry. In addition, there is the human side of science: how people are ensnared by the mysteries facing us and pursue the tedious day to day work which mostly goes nowhere. But enough. Let’s to the story.

Over the last one-hundred years or so we as humans have been vouchsafed through science an overarching view of the universe we inhabit. At the beginning of that last century, around 1920, we knew that the stars were incredibly far away, but figured that the entire universe was embodied in the enormity of what we now call our galaxy. Only eighty-two years before that in 1838 had the first accurate distance to a star been calculated using the phenomenon of parallax, a shift in the apparent position of nearer objects relative to those further away when observed from different viewpoints. A simple way to observe and understand parallax, is to hold up a finger at arm’s length in front of one’s nose, close one eye and then the other. The apparent position of one’s finger jumps back and forth relative to a background further away. One half the angle of the shift defines the parallax. One uses half of the shift because the direction straight out from one’s nose towards the outstretched finger defines a base direction for where one is looking. A line to the finger from either eye meets the straight-out line at the parallax angel. Knowing this angle and the distance between one’s eyes, one can calculate the distance to one’s finger using simple trigonometry. That calculation would be pointless; however, one realizes, using the same idea, that instead of the distance between one’s eyes, one can take the distance between opposite sides of the earth’s orbit around the sun and by measuring the apparent shift in position of nearby stars relative to those further away, one can calculate the distance to those nearby stars.

The fact that there should be parallax in the heavens was understood in ancient times, was known to many in the sixteenth century and could be used to calculate the distance to the moon, around 10 times the circumference of the earth. The seminal transitional figure, Tycho Brahe, 1546 – 1601, excited by the new theory of Copernicus (1543), but still under the thrall of the classic Ptolemaic view, realized that only by measuring the angular position of both the “fixed” and the “wandering stars”, called planets, might he be able to tell what was really going on in the heavens. Tycho thus became obsessed with measuring, so was among the first in history to intuit and practice what we now realize lies at the heart of science, careful measurement and observation 1. Tycho was a Danish nobleman and used his own and other money to finance the construction of instruments such as quadrants and sextants, each like a piece of a giant protractor. During his life he measured hundreds of stellar positions as well as those of the planets. The telescope’s invention lay in the future, but Tycho could measure angles to around a minute of arc, one sixtieth of a degree, about thirty times smaller than the moon’s diameter as seen from earth. Probably influenced by ancient Greek ideas of an earth surrounded by crystalline2 spheres carrying successively, the moon, the sun, each of the five planets, and then the fixed stars, Tycho imagined that the stars were not much farther away than the planets. If Copernicus was right and the earth had a circular orbit around a fixed sun, Tycho should easily be able to detect the parallax shift in at least a few stars over a six-month period as the earth swung around the sun in its orbit. Finding such a shift would confirm Copernicus and simultaneously give an idea of the distance to the stars in terms of the roughly known distance to the sun.

Over a year’s time Tycho could detect not the slightest parallax in any candidate star. This meant one of two things. Either the earth and the stars were fixed in the cosmos, OR the stars were unimaginably far away. The latter possibility was to Tycho unthinkable so he guessed the former and made up a model in which the five planets circled the sun, while the whole shebang of sun and planets, circled the central, spinning fixed earth and her moon inside the sphere of the fixed stars. Tycho’s theory was messy, but saved at least part of Copernicus’s beautiful picture. Tycho’s guess was wrong, as so many scientific guesses are. In fact, wrong guesses are an important part of science even though they mostly are forgotten and ignored by history. In Tycho’s case although his guess was wrong, his measurements proved crucial to Kepler’s laws of planetary motion, and with the contributions of Galileo and Newton, a Copernican model made more sense, although it took over another 100 years for stellar parallax to be detected and yet another 100 years before it was actually measured by Friedrich Bessel in 1838. Before its detection in the early 1700’s there were still die-hard anti-Copernicans who could use the lack of stellar parallax as the primary evidence for their views. It seemed to them impossible that stars could be so distant. As it turns out, the parallax of the nearest star is less than an arc second, more than 60 times smaller than Tycho Brahe could detect. An arc second is the angle subtended by a quarter 3.3 miles away and the stellar shift is at most about half of that. (See Wikipedia’s article, “Stellar Parallax”.)

It’s worth doing some simple math in a short paragraph to show how the distance to nearby stars is calculated and find its value. (Feel free to skim.) It turns out that one doesn’t even need to use trig, because if the parallax angle is small, one can use the formula s = r times ø, relating the arc length s on a circle to its radius r and the angle ø which s subtends. In the astronomical situation r is the distance to the star, s is the radius of the earth’s orbit around the sun, 93,000,000 miles or so, and ø is the parallax angle. The angle ø needs to be in radians, an angular unit = π/180 times the angle in degrees. These days with a smart phone one can easily grind out the calculation. Let’s take ø to be half a second of arc. We need that half second to be in degrees so we can then multiply by π/180 and have it in radians. So, .5 times 1 /60 x 1/60 = .5/3600 = 0.000138888 degrees. Multiply that by π and divide by 180 and we have our half second as 0.00000242407 radians. Divide 1 by this angle and we find that a nearby star is 413,000 times as distant as our sun; namely 38,400,000,000,000 miles away. Astronomers like to cut these big numbers down to size. If we used an entire second rather than a half as our parallax, the distance would be half as much. Astronomers name this latter distance a parallax second, abbreviated as a parsec, pc. Our hypothetical star is 2 parsecs away and there are, in fact, stars that are that close to us. There are none as close as a parsec. Another distance unit in popular usage is the light year, the distance light goes in a year’s time, traveling 186,000 miles or so each second throughout the year. You can whip out your phone and show that a parsec is about 3.26 lightyears. It is worth contemplating for a moment the magnitude of this distance to our near neighbor stars. Light gets to the moon in a couple of seconds, to the sun in half a minute, but takes 5 years or so to reach nearby stars, 2 parsecs away. We will see below that typical distances in our universe are measured in mega parsecs, a million times as large. As a means for measuring cosmic distances parallax is quite limited. The satellite Hipparcos, aloft 1989 – 1993, could detect a parallax of 0.001 arcseconds (like measuring the diameter of a quarter in New York as observed from San Francisco), so could measure the distance to stars one-thousand parsecs away. Helpful, for stars in our immediate neighborhood, but worthless further out.

As the twentieth century dawned it was clear that most stars were unfathomly far away and that any parallax they possessed was infinitesimal. Enter into our story Henrietta Swan Leavitt, 1867 – 1921. Around 1892 as a college senior she took an astronomy course and became incorrigibly fascinated. As a woman traditional routes to becoming an astronomer were closed to her. Instead she was able to wrangle her way as a volunteer at the Harvard Observatory. Around 1900 photographic plates came into being and were soon put to use in astronomy. The relative brightness of stars could be measured with greater precision on these plates than by naked eye observation and Henrietta, was put to work measuring the brightness of thousands of stars. Imagine the tedium of this work, day after day, year after year, with only a slight inkling of what use this data would ever have. However, in the early 1900’s while measuring the relative brightness of 1777 so-called Cepheid variable stars, Henrietta noticed something; namely, that there was a relationship between the brightness and dimness period of these stars and their relative brightness at its peak. She made a graph of the data and pointed out her finding to her boss, the astronomer, Edward Pickering. As a woman she could not publish her finding, but Pickering could and did in 1912, giving her credit for the discovery. The stars whose brightness she measured were in the large Magellanic Cloud, a nebula, so were at an unknown distance. The brightness was only relative. However, people soon realized that there were nearby Cepheids within parallax range. With an absolute measure of brightness established one could potentially reach out, finding the distance to stars much further away than could previously be measured. Ms. Leavitt pointed this out before she succumbed to breast cancer in 1921. Her finding was easily worth a Nobel prize, but there were three reasons she could not be considered. 1, Nobel’s are only given to living persons; 2, Astronomers were ineligible in those days; and 3, She was a woman.

By 1924, using parallax, the distance to several nearby Cepheids had been measured and the time was ripe for momentous discoveries. The first of these was made by Edwin Hubble using the newly built 100-inch Wilson telescope above Pasadena, California. (When I lived in Pasadena in 1953-4, I would hike up to the observatory on weekends and occasionally be amused by the spectacle of California drivers skidding around in a rare snowfall.) By the end of 1924 Hubble had been able to detect and measure the brightness of several Cepheids in the Andromeda and other nearby “nebulae”. Clearly, the distance to these stars was much greater than to any star in our milky way galaxy and the “nebulae” were, in fact, “island universes”, each consisting of a several hundred billion or so stars. Hubble thus settled a controversy since some influential astronomers at the time thought that the nebulae were simply large star clusters inside our milky way. As a distance measure, astronomers still cling to the parsec, an established convention, but now mostly in the form of a kilo or mega pc, a thousand or million times the distance mentioned in the last paragraph. For example, our nearest neighbor galaxy, according to the Wikipedia article “Andromeda Galaxy”, lies at a distance from us of 778 kpc or 2.54 million light years.

As the 1920’s wore on (remember: this is the time of the quantum revolution, the German hyperinflation and the inexorable growing foundation for Hitler’s rise) Edwin Hubble made another earthshaking discovery, measuring a Doppler shift in the spectra of various galaxies. One experiences a Doppler shift here on earth when an emergency vehicle with “lights and sirens”, passes by. The pitch of the siren suddenly lowers as the vehicle passes. Hubble found that the frequency of light from galaxies lowered (were Doppler shifted towards the red), the amount of shift being directly proportional to the estimated distance of the galaxies. What this meant was that the farther a galaxy was from us, the component of its velocity in our direction was always away and greater. Imagine in your mind being in the middle of all these galaxies. Anywhere you imagine being, you are always in an apparent center (so says general relativity) and all the galaxies are moving away. The number of threads in the fabric of the entire universe is increasing so distance measures are growing. The speculation this situation suggests is that at one time there was a beginning of this spread and that the entire universe exploded out of nothingness. This idea is called “the big bang” theory, “big bang” being an expression coined by Sir Fred Hoyle, a brilliant, creative, quirky British physicist and astronomer, who proposed a rival, steady-state theory of an eternal, expanding universe, kept homogeneous by the rare, occasional creation of a stable elementary particle. Hoyle claimed he was not being pejorative in his term, but with it he was implying that the very idea of a “big bang” was ridiculous. Among other things Hoyle wrote some interesting science-fiction novels, one at least, based on a possible rupture of space-time in the vicinity of earth. (October the First is Too Late.)

Hubble published the paper about his red-shift observations and some of their consequences in 1929. His ideas had been anticipated in greater detail and published in a somewhat obscure journal, two years earlier by Georges Lemaître, a priest, mathematician and physicist, then a part-time lecturer at the Catholic University of Louvain in Belgium, see Wikipedia. Lemaître, rediscovered a metric, predicting the expansion, in the equations of General Relativity. Also, he realized that Einstein’s solution for a static universe was untenable. Then, using red-shift observations in the literature, Lemaître made the first estimate of the Hubble constant (now renamed the Hubble-Lemaître constant). Lemaître was also the first to imagine the “big bang” arising from a densely packed “primeval atom” containing what was to become our entire universe. When Lemaître translated his paper to English in 1931 he left out his section about the Hubble constant because by then Hubble’s 1929 paper had come out and Lemaître figured that his own value was obsolete. Ironically, Hubble’s value was off by a factor of 10 or so. Nowadays we know that the constant(?) is about 70 although at the moment (7/14/2020) there are at least two different values which disagree, with a gap beyond their error estimates. The units of the “70” which I left out of the previous sentence are worth explaining briefly. (70, without units, has the same status as 48, mentioned in Douglas Adams Hitchhikers Guide to the Galaxy as the answer to “life, the universe and all that.”) To understand the Hubble expansion unit, imagine that we “look” out from our earthly center of the universe a megaparsec. We will find that out there, all the galaxies are moving away from us at an average speed of 70 kilometers per second. Go out another mpc and they’re going at 140, etc. The unit is thus a kilometer per second per megaparsec. Incidentally, the variation of galaxy velocities making up this average is small. The universe is incredibly homogeneous, a fact Hoyle could have used, had he known, in his long battle with the big bang.

Until fairly recently Hubble received the credit (for whatever it’s worth) of discovering the red shift and the big bang because of his well-publicized 1929 paper. Hubble did nothing dishonest in accepting his honors and fame, but also did nothing in the way of discouraging such. Why should he? Lemaître remained an obscure figure partly because he was not at all interested in self-promotion and possibly because he was a Catholic priest, with the baggage of being considered anti-science because of his religion.

As the 20th century wore on, the picture suggested in the first third of the century fleshed out. People researched the different kinds of galaxies, realizing in the process that there are 100 billion or so in our universe to say nothing of quasars and “black holes”. Between 1963 and 1965 perhaps the most exciting astronomical discovery of the century occurred. I can remember my excitement in 1965, as a newly installed Associate Professor at Auburn University, when the news came out that a cosmic microwave radiation had been accidentally observed by Penzias and Wilson at a Bell Labs site, using a large so-called horn antenna. The signal was to them, when first detected, unwanted noise, and they tried in vain to get rid of it. Finally, they called Professor Dicke at Princeton, whose design was incorporated in their antenna. According to Wikipedia when Dicke got the call, he said to his team, “Boys, we’ve been scooped”. The radiation had been theoretically predicted and Dicke’s team was about to search for it. As the shape of the radiation spectrum was filled in, it fitted exactly, the formula that Planck had found in 1900, for black body radiation. Link to Black Body discovery. The temperature of the radiation was 2.7 degrees above absolute zero, having cooled from an incredible high temperature through the expansion of space from the time when the universe became transparent to electromagnetic radiation some 200,000 years after the big bang. This observation of cosmic black-body radiation was a striking confirmation of the big bang theory, and, in no way, could be twisted to be compatible with Hoyle’s rival theory. The decline of the Hoyle theory is a good example of Karl Popper’s idea of how science advances as I discussed in an earlier post. However, in science, nothing is ever really settled and continuous creation could easily again rear its [ugly?] head.

Towards the end of the 20th century, as more and better measurements of the cosmic radiation were made, it became clear how remarkably homogeneous it was. How could this be? As the fabric of the universe expands, regions become separated in a way special relativity calls “spacelike”. No signal could pass back and forth to soothe out fluctuations. Thus, unlike a cooling liquid, there is no mechanism to bring about homogeneity. Between 1979 and 1981, a young physicist, Alan Guth, developed a theory of inflation. This was not an economic theory, but, instead, the idea, that in the early instants of the big bang, “negative vacuum pressure” caused a wild, exponential expansion of the infant universe. After the inflationary expansion stopped, the universe was much larger and the ordinary Hubble type of expansion took over. Recent satellite measurements of the remaining non homogeneity agree well with Guth’s theory. I must confess that an intuitive understanding of the math behind this theory is totally beyond me.

In more recent times, deep mysteries concerning dark matter, dark energy and the idea of a multiverse have arisen. At this point I will not talk about them, leaving a possible discussion for later. Instead I will ask, “what is the significance for a thinking, aware human being of what we have found out about the place in which we live?” Many have noted that the history of cosmic discovery is one which displaced the human race further and further from the central significance we thought we had in the scheme of things back in ancient and medieval times, a displacement towards utter insignificance and humiliation. I want to take an almost opposite point of view. I wish to disregard the finer points of the science and look at the universe in the largely non-quantitative way as I have described in the previous paragraphs. I want to consider our picture of the universe as an aesthetic object, an unbelievably magnificent work of art. I want to suggest that this picture of the universe is, as well, a gigantic Zen Mondo, making clear an ultimate religious view beyond any language in which it could be couched.

If I am able to proceed in this direction, I must switch to an entirely different language game. So, in the a later post, possibly the next, I need to go further into the meta-language concept as suggested and developed by Wittgenstein, Kuhn and Meagher. Back To Top

  1. While observation and measurement lie at the heart, “theory” comprises the soul. For science to be a living being, it needs both. ↩︎
  2. If you think that the moving crystalline spheres, giving off a kind of music, are unreasonable, consider the “luminiferous ether”, a medium in space, thought necessary, in the late nineteenth century, for carrying light waves. In order for light to have its observed speed, the ether would need to be massless and incredibly rigid yet allow astronomical bodies such as the earth, planets and stars to pass through it in a frictionless way. Perhaps, that is. Allowing the ether to be dragged along close to earth could explain why it was undetected by the Michelson-Morley experiment. As it turns out, the electromagnetic field is perfectly capable of existing in vacuum, unlike all the more familiar waves known at the time. This is another example where a “guess” was wrong and, in this case, adopted by an entire scientific community. ↩︎

For my Future Wife

As mentioned earlier in “The Morass, Part II”,  I abandoned Auburn, Alabama in June, 1974, driving a newly purchased Volkswagen beetle to Cottage Grove, Oregon. My wife Barbara had made it clear that our relationship was finished and I saw no point in remaining at Auburn where my teaching career was also on the rocks. The VW cost $250 as I remember, but seemed in good condition and drove adequately. I had a tent and camped along the way. My route went NE through Alabama to Tennessee, then across the Mississippi into Missouri. I remember a miserable camp in that state with humid heat and insects which drove me into my sweltering tent. In western Nebraska I rejoiced at seeing the first sage brush. It felt good amidst the travail of my feelings to be back in the West.

Cottage Grove was home to the Cerro Gordo project, whose idea was to plan and build a community embodying many of the counter-cultural ideas of the time. The hope was to demonstrate a synergy among a new infrastructure, new educational ideas, and a new way of life. The new settlement was not to be a commune, but a live, diverse village. I won’t here go into details of how the village idea failed. However, fail it did, and around 1977 I moved on to try make a new life.

I was, of course, devastated at the time because I was still deeply in love with Barbara, but after seven years or so that love faded and I, indeed, settled into a new life, my sanity having been saved by cross-country skiing and the many new friends from the Cerro Gordo project. For many years my financial situation was shaky and I was occasionally close to becoming homeless. Four or five of us lived in a communal house on Washington Street in Cottage Grove sharing the rent and phone bill. One of these housemates, mentioned earlier, was Fred Ure, a talented sculptor and owner of the book about Wittgenstein’s philosophy.  Later, in the eighties, with the help of a friend I became a computer programmer and software designer and my finances improved. I learned about accounting and business and gradually became a successful stock market investor. I moved from Cottage Grove to Eugene, Oregon around 1990.

Still, my life felt basically empty because the lack of a close romantic relationship left a void. Then, much later, around the late 1990’s I met Susan S and was immediately enthralled by her. I knew she was a climber and skier and we saw each other on occasion cross country skiing and  in the rock gym. I climbed with my friend, David, and whenever she and her friends walked into the gym, I felt an electric shock. The breakthrough came one day when I rode with her and our bicycles to a bike trip near Cottage Grove. On a later hike I fought my shyness aside and told her I loved her. She seemed somewhat interested, and curious when I mentioned our age difference. (I look younger than my age). I felt that that difference would immediately kill the possibility of an intimate relationship since she was 24 years younger than me. She was indeed taken aback, but we continued to see each other and relate. Susan too had recently been divorced and missed a close relationship. I learned that she was an avid mountain climber like I was and that she was the training director of Eugene Mountain Rescue. Gradually we become closer and it was to her that I wrote the letter, quoted in an earlier version of this blog.   

“Our relationship will never go to that completion I desire unless you are
as crazy as I am. Our human condition is to be trapped in an animal body
aspiring for the stars. Our consciousness non-existent for an eternity of
the past and to be non-existent for an eternity to come. Meanwhile, for a
brief instant we are here. If one truly realizes our condition, one must
be crazy, at least by conventional standards. This is not a sick,
destructive craziness, but a creative, tragic, open and aware craziness.
This kind of craziness I’m talking about is the only sanity. Are you that
crazy? A humorous saying is, “Never sleep with anyone crazier than
yourself.” I would turn that around and say, “Never sleep with anyone who
isn’t as crazy as you are.” If one is in touch with another at that level,
nothing else matters; not differences of age, of personality, of
temperament, of wealth, of fame, or of position in society. If one
doesn’t have a deep bond at that level, the relationship may be nice but
will never be complete. And can never bear the name of true love.”

We lived together for a while, then married in 2003. Later we moved from Eugene to Bend, Oregon where I started this blog in 2016. The letter was originally posted on April 23, 2016. Today, September 21, 2023, is our 20th anniversary. “Still crazy after all these years.” Back to Top

Reality

Reality is what we all know about as long as we don’t think. It’s not meant to be thought about but reacted to; as threats, awareness of danger; bred into our bones by countless years of evolution. But now, after those countless years, we have a brain and a different kind of awareness that can wonder about such things. Is such wonder worthless? Who knows. Worthless or not, I’m stuck with it because I enjoy ruminations and trying to understand what we take for granted, finding as I think harder, nothing but mystery. In this post I will begin to talk about “reality” and try to clarify the idea somewhat, bringing in Zen, which may or may not be relevant.

In thinking about “reality” I will take it as a primitive, attempting no definition. One may try to get at reality by considering “fiction”, perhaps a polar opposite. In this consideration one notes that Aristotelean logic doesn’t apply. There is a middle one can’t exclude, because, in this case, the middle is larger and more important than the ends of the spectrum.

One can begin to work into this middle by considering the use of the word “fiction” in Yuval Harari’s Sapiens: A Brief History of Humankind, where “fiction” is applied to societal conventions and laws. Sapiens is a fascinating book, but Harari’s use of the word “fiction” for “convention” rubbed me the wrong way. Although laws and conventions are, strictly speaking, fictions, they have one property popularly attributed to “reality”. A common saying is: “One doesn’t have to believe in reality. It will up and bite you whether you believe in it or not.” The same applies to laws and convention. If one is about to be executed for “treason”, it doesn’t matter that the law is really a “fiction”, compared perhaps with physical reality. In fact, most “realities” whether physical or societal possess a large social component. This area of social agreement comes up when one judges whether another human is sane or crazy. The sine qua non of insanity is its defiance of reality as it is conceived by we “sane ones.” Unfortunately, it is all too easy to forget that conventions are a product of society and take them as absolutes. Teenagers are notorious for wanting to be “in” with their crowd even when the fashions of the crowd are highly dubious. But many so-called grown-ups are equally taken in by the conventions of society. Most of the time it is easy and harmless to go along with the conventions, but one should always realize that they are, in fact, made up and vary from society to society. Presumably that is what Harari was trying to emphasize.

Then there are questions of the depth of realities. In many cultures there is a claim for “levels of reality” beyond everyday physical realities like streets, tile floors, buildings, weather, and the world around us. Hindu mystics consider the “real” world Maya, an illusion. Modern physics grants the reality of the everyday world, but has found a world of possibly deeper reality behind it. There are atoms, molecules, elementary particles, all governed by the “reality” of quantum mechanics which lies behind what one might be tempted to call the “fiction” of classical mechanics. No physicist “really” considers classical mechanics a fiction, though perhaps many would claim there is a wider and possibly deeper reality behind it. Most physicists would leave such questions to philosophers and would consider serious thought about them, a waste of time. Physics first imagined the reality of molecules in the nineteenth century, explaining concepts and measurements of heat related phenomena. For example, temperature is the mean kinetic energy of molecular motion related to what we measure with a thermometer by Boltzmann’s constant. In the early 20th century there were very reputable scientists skeptical of the existence of atoms and molecules. Most of them were convinced of the atom’s reality by Einstein’s theory of Brownian motion (1905). As the 20th century wore on the entire basis of chemistry was established in great detail by quantum theories of electron states in atoms and molecules. In the twenties and thirties cosmology came into being. Besides explaining the genesis of atomic elements, cosmology, using astronomical observations and theory, finds a universe consisting of 10’s of billions of galaxies, each consisting on average of 10’s of billions of stars, all of which originated in a “big bang” some 13.6 billion years ago. In a later post I’ll consider the current situation physics finds itself in, with dark matter, dark energy, string theory, and ideas of a multi-verse. If one considers these as realities, one should not hold such a belief too firmly. History teaches us that physics is subject to revolutions which alter the very “facts” of physical reality. Besides the lurking revolutions of the future one notes that the “realities” of physics and chemistry lie in their theories which have proved essential for the “reality” of our modern technologies. One might claim however, that these are theories of reality, rather than a more immediate impingement of reality in our lives. I hope to say more about “physical reality” in the next post.

Leaving the physical world, one asks, “What about myth, an admitted fiction?” If a myth has a deep meaning and lesson for our lives, doesn’t that entail a certain kind of reality of more importance than a trivial sort of physical reality? Consider “myth” vs. “history”. Reality for history depends on “primary sources”, written records. The “written” record might be that of an oral interview when recent history is concerned; but the idea is that there is a concrete record of some kind that relates directly to the happenings that history is reporting. Consider the stories about Pythagoras I wrote about in the last post. These stories were based on “secondary sources”, accounts written hundreds of years after Pythagoras’s death, relying on hearsay or vanished primary sources with no way of telling which was which. They form the basis for the shallow kind of myth that gives “myth” its common pejorative connotation. We dismiss the myths about Pythagoras’s golden thigh, his flying from place to place, where he may appear simultaneously, not simply because these claims conflict with our present scientific world view, but because they have no relevance to facts about Pythagoras which matter to us in considering his contributions to the history of mathematics. The myths about Pythagoras can be considered “trivial” myths which discredit the very idea of myth. But what about deeper myths? Most religions tell stories about their founders and contributors which have a high mythic content. I ask in this context, “Does distinguishing between myth and historical reality in matters of religious history, really matter, or matter at all?” Buddhists are notorious for being unfazed when various historical stories are proven fictional by historians. I would baldly state their attitude as: “The religious importance of the story is what matters; not the factual truth of every so-called fact in the canon.” Getting closer to home, I might ask, “Suppose the facts about Jesus’s physical existence were convincingly proved to be completely fictional. Would it matter to Christianity?” I would guess that it WOULD be devastating to believers, but that, in fact, it SHOULDN’T be. What matters in Christianity is the insight that feelings of love are deeply embedded in the universe and that Jesus, whether a fictional person or not, is responsible for bringing this “fact” to life, to showing that in the deep mystery one might call “God”, there is a forgiveness of the animal brutishness of humans. If through an active nurture of love in ourselves we experience this deep truth and express it in the way we act towards others, we redeem ourselves, and potentially, all of humanity. The stories, “myths” if you will, help us towards this experiential realization, a realization that is utterly unrelated to “belief”, a realization which could be called “Christian Satori”. The uniqueness of Christianity, as far as I can tell, is this emphasis on “love”. Unfortunately, the methodology of Christianity, with its historical emphasis on grasping ever harder at “belief”, is deeply flawed, leading backwards to the brutishness, rather than forward to love. Certain Christian thinkers, Thomas Merton for example, seem to have realized that Zen practice can be helpful in reaching a deeper understanding of their religion. One aspect of a Western Zen would be its applicability to a Western religious practice of a more deeply realized Christianity. Actually, whether or not “love” is embedded in the universe, we, as humans are susceptible to it, and can choose to base our lives on realizing its full depths in our beings.

Getting back to “reality”, I’ll consider possible insights from traditional Eastern Zen. So far in talking about Zen I’ve emphasized the Soto school of Japanese Zen and have tried to show how various Western ideas are susceptible to a deeper understanding by means of what might be called Western Zen. Actually, I claim that the insights of Zen lie below any cultural trappings; and that for a complete understanding, particularly as such might relate to “reality”, one should consider Zen in all its manifestations. The Rinzai Japanese school is the one we typically find written about in the US. It is the school which perhaps (I’m pretty ignorant about such matters) has deeper roots in China where Zen originated and the discipline of concentrating on Koans came into being. An excellent introduction to this school is the book Zen Comments on the Mumonkan, by Zenkei Shibayama, Harper and Row, 1974. The Chinese master Wu-men, 1183-1260, collected together 48 existing Koans and published them in the book, Wu-wen kuan. In Japan Wu-wen is called “Mumon” and his book is called the Mumonkan.

During the late 1960’s and early 1970’s I attended an annual conference of what was then called the Society for Religion in Higher Education. Barbara, my wife at the time, as a former Fulbright scholar, was an automatic member of this Society. As her husband I could also attend the conference. The meetings of the Society were always very interesting with deeply insightful discussions going on, day and night. These discussions never much concerned belief in anything, but concentrated on questions of meaning and values. In fact, the name of the Society was later changed to the Society for Values in Higher Education. During one of the last meetings I attended, possibly in 1972, there was much discussion about a new Zen book that Kenneth Morgan, a member of the Society was instrumental in bringing into being. Professor Morgan had arranged for the Japanese Master Zenkei Shibayama to give Zen presentations of the Mumonkan at Colgate University. The entire Mumonkan had been translated into English by Sumiko Kudo, a long-time acolyte at Master Shibayama’s monastery and was soon to be published. Having committed to understanding Zen, I was very interested in all of this and looked forward to seeing the book. After moving to Oregon in 1974 I kept my eyes open for it and immediately bought it when it first appeared at the University of Oregon bookstore. Later, I developed a daily routine of doing some Yoga after breakfast and then reading one of the Koans.

The insights that the Koans are to help one realize are totally beyond language. The Koans may be considered to be a kind of verbal Jiujitsu, which when followed rationally will throw one momentarily out of language thinking into an intuitive realization of some sort. I had encountered various Koans before working through the Mumonkan and had found little insight, but, as a student of physics and mathematics, thought of them as fascinating problems to be enjoyed and solved. I realized that in working on a difficult problem in math or physics, the crucial break-through often comes via intuition. One has a sudden insight, and even before trying to apply it to the problem, one realizes that one has found a solution. In a technical area one’s insight can be attached to mathematical or scientific language and the solution is a concrete expression which solves a concrete problem. I realized that with Zen, one might have a similar kind of intuitive insight even if it could not be expressed in ordinary language, but, perhaps, could be stated as an answering Koan to the one posed. Another metaphor besides the Jiujitsu one, is the focusing of an optical instrument, such as a microscope, telescope or binoculars. Especially when trying to focus a microscope one can be too enthusiastic in turning the focusing wheel and turn right past the focus, seeing that for an instant one had it, but that it was now gone. With a microscope one can recover the focus. With a Zen Koan the momentary insight is usually lost and efforts at recovery hopeless.

A somewhat better example of this focusing metaphor occurred when I was a professor at Auburn University. One quarter I taught a lab for an undergraduate course in electricity and magnetism. This was slightly intimidating as I was a theoretical physicist with little background in dealing with experimental apparatus. One afternoon the experiment consisted of working with an ac (alternating current) bridge similar to a Wheatstone bridge for direct current, but with a complication arising from the ac. Electrical bridges were developed in the nineteenth century to measure certain electrical quantities which are these days more easily measured by other means. Nowadays the bridges mainly have pedagogical value. With a Wheatstone bridge one achieves a balance in the bridge by adjusting a variable resistor until the current across the bridge, measured by a delicate ammeter, vanishes. One can then deduce the value of an unknown resistor in the circuit. With ac there is not only resistance but also a quantity called reactance, which arises because a magnetic coil or capacitor will pass an ac current. To adjust an ac bridge, one twiddles not only a variable resistance but a variable magnetic coil (inductor) which changes the reactance. In the lab there were about 5 or 6 bridges to be set up, each tended by a pair of students. The students put their bridges together with no difficulties; but then, after about 10 minutes, it became clear that none of the student teams had been able to balance their bridge. The idea was to adjust one of the two adjustable pieces until there was a dip in the current through the ammeter. Then adjust the other until the dip increased, continuing in this back and forth manner until the current vanished or became very small. It turned out that no matter what the students did, the current though the ammeter never dipped at all. Of course, the students turned to their instructor for help in solving their problem and I was on the spot. The experience the students had is quite similar to dealing with a Koan. No matter what one does, how much one concentrates, or how long one works at it, the Koan never comes clear. With the ac bridge the students could actually have balanced it by a systematic process, but this would have taken a while. I should have suggested this, but didn’t think of it. Instead I had a pretty good idea of some of the quantities involved in the circuit, whipped out my slide rule (no calculators in those days), and suggested a setting for the inductor. This setting was close enough that there was a current dip when the resistor was adjusted and all was well. The reason that balancing an ac bridge is so difficult is that the two quantities concerned, the resistance R and the reactance X, are in a sense, at right angles to each other, even though they are both quantities measured by an electrical resistance unit, ohms, which is not spatial at all. Nevertheless, even though non-spatial, they satisfy a Pythagorean kind of equation

R² + X² = Z²

where Z is called the Impedance in an ac circuit. The quantities R and X can be plotted at right angles to each other and a triangle made with Z as the hypotenuse. If one adjusts either R or X separately, one is reducing the contribution towards the impedance of one leg of the triangle which does not greatly affect the impedance, at least not enough to noticeably change the current through the ammeter of an ac bridge. Incidentally, what I’ve just explained is a trivial example of a tremendously important idea in theoretical physics and mathematics called isomorphism, in which quantities in wildly different contexts share the same mathematical structure.

I hope that the analogies of verbal Jiujitsu and getting things into focus make somewhat clearer the problem of dealing with Koans. One might well ask if such dealing is worth the trouble and, on a personal note, what kind of luck I’ve had with them, especially as they might throw some light on the nature of “reality”. First, I must say that I have found that engaging the Koans of the Mumonkan is very worthwhile even though most of them remain completely mysterious to me. Moreover, even though I have had epiphanies when reading some of the Koans or the comments about them, there is no way for me to tell whether or not I have really understood what, if anything, they are driving at. Nevertheless, after spending some years with them, off and on, in a very desultory, undisciplined manner, I feel that they have helped indirectly to make my thinking clearer. My approach when I first spent a year going through Zen Comments was to do a few minutes of Yoga exercises, with Yoga breathing and meditation, attempting to clear my mind. Then I would carefully read the Koan and the comments, not trying to understand at all, while continuing meditation. Typically, at that point, I would have a peaceful feeling from the meditation but no epiphany or understanding. I would then put the book aside and go about the business of the day until I repeated this exercise with the next Koan the next day. Sometimes I would skip a day and sometimes I would go back and look at an earlier Koan. This reading was very pleasant as an exercise. I tried to develop the attitude of indifference towards whether I understood anything or not and avoided getting wrought up in trying to break through. My feeling about this kind of exercise is that it does lead to some kind of spiritual growth whether or not the Koans make any sense. As for “enlightenment”, I think it is a loaded word and best ignored. A Western substitute might be “clarity of thought”. Whether or not meditation, studying Koans or just thinking has anything to do with it, I have, on occasion, been unexpectedly thrown into a state of unusual clarity, in which puzzles which once seemed baffling seemed to come clear. As for the Zen Comments I might make a few suggestions especially as they relate to “reality”. Consider, for example, Koan 19, “Ordinary Mind is Tao”, towards which the metaphor above, of finding a focus, might be relevant. If you haven’t heard about the concept of Tao, pick up and read the Tao Te Ching, Lao Tzu’s fundamental Chinese classic. Tao may be loosely translated as “Deep Truth Path”. Koan 19, as translated by Ms. Kudo reads as follows:

“Joshu once asked Nansen, ‘What is Tao?’ Nansen answered, ‘Ordinary mind is Tao.’ ‘Then should we direct ourselves towards it or not?’ asked Joshu. ‘If you try to direct yourself toward it, you go away from it,’ answered Nansen. Joshu continued, ‘If we do not try, how can we know that it is Tao?’ Nansen replied, ‘Tao does not belong to knowing or not knowing. Knowing is illusion; not knowing is blankness. If you really attain to Tao of no-doubt, it is like the great void, so vast and boundless. How then can there be right or wrong in the Tao?’ At these words Joshu was suddenly enlightened.”

Mumon Commented. This comment is very relevant.

“Questioned by Joshu, Nansen immediately shows that the tile is disintegrating, the ice is dissolving, and no communication whatsoever is possible. Even though Joshu may be enlightened, he can truly get it only after studying for thirty more years.”

I picked this particular Koan because it is one of the few that I feel I actually understand (although I may need another thirty years to really get it). Of course, I can in no way prove this. You must NOT be naïve and think that I understand anything. Furthermore, there is no real explanation of the Koan I can give. I can make a few remarks which should be considered as random twiddles of dials that may chance to zero the impedance in your mind.

First, the whole thing is a logical mess. On the one hand there is nothing special or esoteric about “deep truth path”. It is just the ordinary world (reality) that we sense. On the other hand, when we get “it”, the ordinary world dissolves and we feel an overwhelming sense of the infinite ignorance and non-being which surrounds the small island of knowledge we have attained in our human history so far. In fact, both the ordinary and the transcendent are simultaneously present to our awareness and one cannot be considered more significant than the other.

Note that this Koan is superstition free. There are no claims of esoteric knowledge. There are no contradictions of any scientific or historical claims to knowledge. There are no contradictions of anything we might consider superstitions. There is no contradiction of the doctrines of any religion. One might say that the Koan is empty of content. Of verbal content that is.

There is an implicit criticism of Aristotelean logic with its excluded middle. As I’ve already pointed out more than once in this blog, logic has a limited applicability. Part of the “game” of science is to accept only statements to which logic DOES apply. I may later go into stories from the history of physics of the difficulties of playing this exciting game of science, keeping logic intact, when experimental evidence seems to deny it. However, the “game” of physics or any other science is not all of life; and, in fact, Aristotelian logic has been, as I’ve called it in earlier blogs, “the curse of Western Philosophy” and an impediment to a deeper understanding of realities outside of science.

There is more to say about the Mumonkan, but I will leave such to a later blog post. As to differences between Soto and Rinzai Zen I wonder how serious these really are. Koan 19 seems to embody the Rinzai idea of instantaneous enlightenment until one sees Mumon’s comment about another 30 years being required for Joshu to really get it. The Soto doctrine is of gradual enlightenment and a questioning of the very “reality” of the enlightenment concept. A metaphor for either view is the experience of trying to get above a foggy day in a place like Eugene, Oregon, where, when the winter rain finally stops, the clear weather is obscured by a pea-soup fog. One climbs to a height such as Mt. Pisgah or Spencer’s Butte and often finds that though the fog is thinner with hints of blue sky, it is still present. But then there is perhaps a partial break and one sees through a deep hole towards a clear area beyond the fog. This vision may be likened to an epiphany or even to the “Satori” of Rinzai Zen. If we imagine we could wait on our summit for years until, after many breaks, the fog completely clears away, that would be full enlightenment.

Leaving any further consideration of Koan 19, I will end this post on a personal note. If indeed I’ve had a deep enough epiphany to consider it as Satori, this breakthrough has helped reveal that I have a healthy ego, lots of “ego strength”, a concept that Dr. Carr, head of the physics department at Auburn came up with. Experimental physicists, such as Dr. Carr, like to measure things. “Having a lot of ego strength” was his amusing term for people who are overly wrapped up in themselves. My possible Zen insights have not diminished my ego at all. Rather, they have helped to reveal it. I’ve learned not to be too exuberant about insights which as a saying goes, “leave one feeling just as before about the ordinary world except for being two inches off the ground.” If I get too exuberant, I wake up the next day, feeling “worthless”, in the grip of depression. This is a reaction to an unconscious childhood ego build-up in the face of very poor self-esteem. Part of spiritual growth is perhaps not losing one’s ego, but lessening the grip it has on one. I hope that further practice helps me in this regard. Perhaps, some psychological considerations can be the subject of a later post. I will now, however, work on the foundations for such a post by attempting to clarify the “reality” status of scientific theories. Back to Top

Dream and Myth

Sometime ago I had an unusually vivid dream. I was swimming underwater, perhaps ten or fifteen feet below the surface. I was swimming along with little effort, not holding my breath. Looking to one side I saw that I was swimming alongside a huge shark. I had a moment of panic being so close to such a fearsome beast. The shark’s side was 5 feet from top to bottom, it was about 30 feet long, but it wasn’t a harmless whale shark. Then I looked at the shark’s large eye which was staring at me and noticed that the shark’s gaze was intelligent and somehow caring. Immediately, in the dream I felt not only comfortable but deeply peaceful. When I woke up, I remembered the dream clearly.

Among Hawaiians there is a tradition of having a personal totem animal called one’s ʻaumākua.

The wehewehe dictionary’s definition:
nvt. Family or personal gods, deified ancestors who might assume the shape of sharks (all islands except Kauaʻi), owls (as at Mānoa, O’ahu and Kaʻū and Puna, Hawaiʻi), hawks (Hawaiʻi), ʻelepaio, ʻiwi, mudhens, octopuses, eels, mice, rats, dogs, caterpillars, rocks, cowries, clouds, or plants. A symbiotic relationship existed; mortals did not harm or eat ʻaumākua (they fed sharks), and ʻaumākua warned and reprimanded mortals in dreams, visions, and calls. (Beckwith, 1970, pp. 124–43, 559; Nānā 38.) Fig.., a trustworthy person. (Probably lit.., ʻau 4, group, + makua, parent.) See pulapula 2. hō.ʻau.makua To acquire or contact ʻaumākua.

Growing up in Honolulu one heard much of Hawaiian traditions. At my elementary school we heard Hawaiian stories of how Maui raised the islands out of the sea and, on occasion, learned a Hawaiian chant celebrating the god Lono. So it was clear to me that I had a giant shark god as my `aumakua. This was a source of satisfaction; however, if you ask how seriously I took this as protection if I swam in shark infested waters, the answer is “not very.” And, in fact, there is no way I would voluntarily swim in such waters. I knew of and felt the power of some Hawaiian myths, but remained a geeky haole (white person), quite afraid of sharks. I remember body surfing at a great place near Portlock place at Koko head with a crowd of others. As we waited for waves a fishing boat came by and warned us that they had just seen a shark. Everyone moved in closer to the break line, but after missing a wave or two moved back to where we could catch the waves. I was definitely fearful and on guard. True Hawaiians, on the other hand, were not all that afraid of sharks.

My uncle who had come to Hawaii a little prior to 1920 told a story he had heard about the time when dynamite had first come to the Islands. The Hawaiians would go to the outer reef in their canoes, set off a stick of dynamite under water, leap into the water and throw the stunned fish into their canoes. Sharks would show up and go into a feeding frenzy. The Hawaiians would pretty much ignore them except for an occasional push or kick and keep throwing fish into their canoes. I’m not sure how much of this I believe, but certainly the story has it that Hawaiians were very respectful, but not afraid of sharks. One must of course distinguish between reef sharks and the pelagic Tiger shark. Spear fishermen know that they should keep their speared fish at the end of a long line rather than tied to their waist because reef sharks would go after the speared fish. Actual shark attacks, on the other hand, seem to come from Tiger sharks who mostly can reach shore only where the reef is missing or not very wide.

My `aumakua experience of Hawaiian culture was a dream. Others have had vivid, waking experiences. On the Big Island of Hawaii where there are active volcanoes, there is a tradition of Madame Pele, the goddess who controls volcanoes. Many people native or otherwise believe that Madame Pele actually exists. She supposedly is fond of gin so people living near the volcano leave offerings of gin near their houses. It seems to be a good idea to be respectful and try to be in her good graces whether or not she really exists. My mother told me, probably in the 1970’s, of an older couple (haoles), friends of her and my dad, who happened to be in the parking lot of the Crater rim road at the Kilauea Iki view point during the great eruption of 1959. It was at night, but hardly dark, as a fountain of lava about a mile down the crater was illuminating the landscape. A mile sounds like a considerable distance. However, the lava fountain, on one occasion reached almost 1900 feet high (see Wikipedia). The Empire State building in Manhattan is 1454 feet high at its very tip top, while the new World Trade Center’s spire tops out at 1776 feet. So while my folk’s friends stood near the edge of the crater one can imagine a garish, flickering light, intense radiating heat, dark shadows and a loud roar as molten gobs of lava fell into the lava lake at the fountain’s edge. The couple took in the awesome scene for a while, then noticed a Hawaiian women nearby. She had reddish hair and wore a red holuku (Hawaiian mother Hubbard dress). They exchanged a few remarks with her about the incredible scene they were witnessing, then turned back to look at the fountain. Finally, satisfied, they turned to go back to their car and noticed the Hawaiian women rise a couple feet off the ground, drift away to the edge of the parking lot, and vanish.

When I heard this story, I felt a tensing of muscles in my back and my hair felt like it was standing on end. Could I have had this same experience? My emotions said so, but my reason said unlikely. The couple had an hallucination. But just what is the status of hallucinations? One notes that our entire experience of the world is entirely inside our heads, with considerable mental processing of our raw sense impressions. Could not the processing of neuronal pathways, influenced by one’s cultural background, and an incredible, dreamlike scene, construct an image that appears in consciousness as real? It would seem so. Hearing this story made me think that stories, for example, of the Greek gods were likely based on genuine hallucinations rather than simply literary imagination. Probably literary imagination was involved in the elaboration of such hallucinations into an entire cosmology, but behind the stories were experiences of the gods and goddesses that passed for real.

For the Hawaiians living before Captain Cook’s discovery, the myths were integrated into their natural surroundings and constituted an entire world view. Besides being the background to hard won practical knowledge and lore, the myths told of the place of humans in the universe. Their meaning carried religious significance, practical significance and social significance. In the modern world, West and East, reality has been split into “areas” and thereby degraded.

This post has gone on long enough and I will doubtless get later into an inquiry about the concept of “reality”. For now let me just say that if someone explains to you what “virtual reality” is all about, the proper reply is “I didn’t know there was any other kind.”